Recently I've been implementing simple algorithms from scratch from memory. As an exercise, this has the advantage of being short, well-defined and (for me at least) challenging. For example, I found it surprisingly hard to write an effective merge of the kind needed for the mergesort algorithm.
The spec is void merge(int[] a, int lo, int mid, int hi)
: two parts of the array are to be merged. It's assumed the two parts are already sorted. The two parts are adjacent; the first part includes the items from lo
to mid - 1
; the second is the items from mid
to hi - 1
.
Here's my first attempt, rushed out late at night.
private void merge(int[] a, int lo, int mid, int hi) {
assert mid == lo + (hi - lo) / 2;
List<Integer> result = new ArrayList<Integer>();
int i = lo;
int j = mid;
while (i < mid && j < hi) {
int m = a[i];
int n = a[j];
if (m > n) {
result.add(n);
j++;
} else {
result.add(m);
i++;
}
}
while (i < mid) {
result.add(a[i++]);
}
while (j < hi) {
result.add(a[j++]);
}
for (i = lo, j = 0; j < result.size(); i++, j++) {
a[i] = result.get(j);
}
}
}
It did the job, but oh my, how I didn't like it. It's verbose and it creates this temporary list of O(n) size. After some more work and several blind alleys, I came up with the following. It's better, but still, it seems harder than it should be. Oddly enough, I found it easier to implement quicksort from scratch than just the merge portion of mergesort.
private void merge(int[] a, int lo, int mid, int hi) {
assert mid == lo + (hi - lo) / 2;
int i = lo;
int j = mid;
while (i < mid) {
if (a[j] < a[i]) {
swap(a, i, j);
j++;
}
i++;
}
if (j < hi) {
while (a[j] < a[i]) {
swap(a, i, j);
i++;
}
}
}
private void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
Finally, the tests I wrote while working this out:
public void testEmpty() {
int [] a = new int[0];
merge(a, 0, 0, 0);
assertEquals(0, a.length);
}
public void testSingleValue() {
int [] a = new int[] { 1 };
merge(a, 0, 0, 1);
assertArraysEqual(new int[] { 1 }, a);
}
public void testTwoValuesRequiringNoSwap() {
int [] a = new int[] { 1, 2 };
merge(a, 0, 1, 2);
assertArraysEqual(new int[] { 1, 2 }, a);
}
public void testTwoValuesRequiringSwap() {
int [] a = new int[] { 2, 1 };
merge(a, 0, 1, 2);
assertArraysEqual(new int[] { 1, 2 }, a);
}
public void testSimpleInterleavedMerge() {
int [] a = new int[] { 1, 3, 2, 4 };
merge(a, 0, 2, 4);
assertArraysEqual(new int[] { 1, 2, 3, 4 }, a);
}
public void testMergeOfSubset() {
int [] a = new int[] { 1, 3, 2, 4, 6, 5 };
merge(a, 0, 2, 4);
assertArraysEqual(new int[] { 1, 2, 3, 4, 6, 5 }, a);
}
public void testMergeOfAllEqual() {
int [] a = new int[] { 1, 1, 1, 1 };
merge(a, 0, 2, 4);
assertArraysEqual(new int[] { 1, 1, 1, 1 }, a);
}
public void testMergeAllFromRight() {
int [] a = new int[] { 3, 4, 1, 2 };
merge(a, 0, 2, 4);
assertArraysEqual(new int[] { 1, 2, 3, 4 }, a);
}
public void testMergeAllFromLeft() {
int [] a = new int[] { 1, 2, 3, 4 };
merge(a, 0, 2, 4);
assertArraysEqual(new int[] { 1, 2, 3, 4 }, a);
}
public void testMergeUnevenNumber() {
int [] a = new int[] { 3, 1, 2 };
merge(a, 0, 1, 3);
assertArraysEqual(new int[] { 1, 2, 3 }, a);
}
public void testMergeLargerList() {
int [] a = new int[] { 5, 6, 7, 1, 2, 3, 4 };
merge(a, 0, 3, 7);
assertArraysEqual(new int[] { 1, 2, 3, 4, 5, 6, 7 }, a);
}